Experimental and analytical studies on a foam insulated rigid type transfer line for use with liquid nitrogen

JYOTISH PATIDAR, R. A. SUMANTH, UPENDRA BEHERA, SRINIVASAN KASTHURIRENGAN

CENTRE FOR CRYOGENIC TECHNOLOGY, INDIAN INSTITUTE OF SCIENCE, BANGALORE-560 012

ABSTRACT

- Designed & developed long rigid-type transfer line for LN2 to transfer from a 5000 litre storage tank to Helium liquefier Model1610 at ~ 50 m by integrating several units of ~ 6.5 m length each.
- Each unit was fabricated with ½” dia copper inner tube with 2” dia PVC outer tube & rigid foam insulated and instrumented with temperature sensors.
- We present the analytical and experimental studies of the cool down and mass flow characteristics of the single foam insulated unit.

DESIGN OF TRANSFER LINE

- **Cool Down Studies**
 - Cool Down Studies of the single foam insulated unit.

Analytical Model Equations

- Steady heat flow
 - Mass Flow Rates
 - Convection equation for LN2 flow in copper pipe.
 - Radiation heat loss from copper pipe to LN2.
 - Insulation properties of foam and air.
- Experimental Studies
 - Mass Flow Rates
 - Experimental Flow rates for LN2.
- Conclusion
 - Rigid type foam insulated LN2 transfer line has been developed for ~ 50 m length. Single segment of ~ 6.5 m is instrumented and experimentally studied.
 - The steady state heat load is theoretically estimated. The cool down of the transfer line is analytically modeled.
 - Experimental studies show that the cool down behaviour compares well with analytical model and mass flow rates are found to increase with increasing supply pressure.
 - Now multiple units of this transfer line are now integrated to build the complete transfer line for the end application.

Acknowledgements

The authors wish to acknowledge the support provided by CCT staff in the fabrication and testing of the transfer lines.